

MOISTURE

Recommendation 25ppm

FarmBeats: Empowering Farmers with Affordable Digital Agriculture Solutions

Ranveer Chandra

The Agricultural Challenge

Global Access

1 in 9 people are undernourished (UN)

65% Reduce poverty for 65% of the world's poor who live in rural areas and work in farming

70% more food is needed by 2050

Sustainable Production

24% of global greenhouse emission comes from Agriculture

251T liters of water to be saved in 2030 from implementing Smart Agriculture

Need for Economic Growth

of global workers are employed by Agriculture

30%

Agriculture contributes 10% of global GDP and up to 30% in low income countries

Global Agriculture revenue

Data-driven agriculture

Precision agriculture has shown to:

According to USDA, high cost of manual data collection prevents farmers from using datadriven agriculture.

There are 4 problem areas hindering adoption...

No connectivity in fields

No power in fields Precision mapping with few sensors

Slow connectivity at farm office

Problem 1: No farm connectivity

Most farms do not have any Internet coverage

Weather and crops cause signal blockage

Problem 2: Precision mapping with limited sensors

Obstructs farming activity

Too expensive

Cumbersome to maintain

Problem 3: Slow rural connectivity to the cloud

No broadband

Intermittent connectivity

Problem 4: No power on the farm

No power in the field

Solar power is unpredictable

An end-to-end system that enables seamless data collection and insights for agriculture

FarmBeats

×

In this talk

FarmBeats: An end-to-end system that enables seamless data collection and insights for agriculture

Solves key challenges:

pH Sensors

Microsoft Research has been studying this for over a decade...

Networking Over White Spaces (KNOWS)

TV channel on network

Unused TV channel

TVWS using Dynamic Spectrum Access (DSA)

FREQUENCY

Determine available spectrum (white spaces) **Transmit** in "available frequencies" **Detect** if primary user appears

Move to new frequencies

Adapt bandwidth and power levels

TVWS using Dynamic Spectrum Access (DSA)

FREQUENCY

Determine available spectrum (white spaces) **Transmit** in "available frequencies" **Detect** if primary user appears

Move to new frequencies

Adapt bandwidth and power levels

Key technical contributions

Microsoft Research was amongst the first to:

Build TVWS radios

Design WhiteFi, a Wi-Fi like protocol for TVWS Demo world's first WhiteFi network in 2009

TV White Spaces in the Farm

What are the TV White Spaces?

Unused TV channels

Key insight for farms:

"Lots" of TV spectrum is available, more than 100 MHz

Just like Wi-Fi router covers the home, TVWS base station can cover the farm

FREQUENCY

In this talk

FarmBeats: An end-to-end system that enables seamless data collection and insights for agriculture

Solves key challenges:

Challenge: Limited resources

Need to work with sparse sensor deployments

- Physical constraints due to farming practices
- Too expensive to deploy and maintain

How do we get coverage with a sparse sensor deployment?

Idea: Use UAVs to enhance spatial coverage

Drones are ~1000 dollars and automatic

Can cover large areas quickly

Can collect visual data

Combine visual data from the UAVs with the sensor data from the farm

Aerial imagery in precision agriculture

Drone Video

<u> </u>	\sim											
		- ·									-	
		-									-	
			•	•								
•		•		•		-			-	-	-	
		•		•					-	•		•
									-			
		- ·									 ■	
		-									-	
		■ I										
		•		•		-		 •	-	-	-	
		•		•		-			-	-	•	
									-	-		
			-								-	
						_						
		-										
				•								
		•		•		-				-	-	
		•				-					• •	
		• •			•	-	I 🔳	 •	-	- 1		
•••								 •	-			
\sim		I					·	 		■		

Processing RGB & multi-spectral imagery

Ariel footage

3D point cloud reconstruction

Processing RGB & multi-spectral imagery

Sequoia multi-spectral camera

Red edge

RGB

Red

Green

Low-cost aerial imagery: Tethered Eye (TYE) UAVs have a few limitations: limited battery life Regulatory concerns

Cost

Idea: Use Drones to Enhance Spatial Coverage

Panoramic Overview

Precision Map

Idea: use drones/balloons to enhance spatial coverage

FarmBeats can use drones to expand the sparse sensor data and create summaries for the farm

Idea: use drones/balloons to enhance spatial coverage

Spprecision Mapata

Formulate as a learning problem

In this talk

FarmBeats: An end-to-end system that enables seamless data collection and insights for agriculture

Solves key challenges:

What services we can provide

Service characteristics

Large inputs

Data source	Daily size
Sensor	70K
Drone video	10G
Drone image	4G
Camera	28M

Latency constraints

Service	Latency
Query sensor data	seconds
Livestock monitoring	seconds
Irrigation schedules	hours
Pest inspection	hours
Variability analysis	Days

The Ideal World

FarmBeats Gateway (Azure IoT Edge)

In this talk

FarmBeats: An end-to-end system that enables seamless data collection and insights for agriculture

Solves key challenges:

Pilot Project Status

Deployment

Deployments in several locations including WA, CA, NY

Farm sizes range from 5 – 2000 acres

Sensors:

- DJI Drones
- FarmBeats sensor boxes with soil moisture, temperature, pH, wind speed/direction sensors
- IP Cameras to capture IR imagery as well as monitoring

Cloud Components: Azure IoT Suite

Deployment statistics

Used 10 sensor types, 3 camera types and 3 drone versions Deployed >100 sensors and ~10 cameras Collected >10 million sensor measurements, >0.5 million images, 100 drone surveys

Resilient to week long outage from a thunderstorm

Micro-Climate Forecasting

Goal:

Microclimate weather forecasting model based on FarmBeats sensors in the field.

Impact:

Knowing microclimate enables better modeling of plant diseases, increasing overall classification accuracy.

Challenges:

Forecast important variables for accurate plant disease prediction, not included in current weather forecasts (results shown).

Results:

Soil moisture & temperature forecasting error less than 10%.

Example: Panorama

Water puddle

Cow excreta

Cow herd

Stray cow

Precision Map: Panorama Generation

Precision Map : Moisture

Precision Map : pH

Precision Map: Accuracy

FarmBeats can accurately expand coverage by orders of magnitude using a sparse sensor deployment

Application: Storage Monitoring

Application: Cow-Shed Monitor

Project FarmBeats

Microsoft Smart Agriculture Cloud Platform

FarmBeats

FarmBeats Accelerator

Agri IoT Plug-n-play deployment of sensors in minutes & ingest data in cloud

Agri Data

Marketplace for satellite & weather data, AI models, and data pipelines

Microsoft Azure Platform

Microsoft's Approach to Agriculture

Conclusion

FarmBeats: End to end IoT system for environments constrained by:

- Limited internet connectivity
- Power variability
- Precision mapping
- Azure IoT Edge

Acts as a tool to enhance farm and farmer productivity

Microsoft's entire stack for Agriculture:

Data Capture (Azure IoT), providing Insights (Power BI), secure storage (Azure Data Lake), Traceability (BlockChain), AI & ML (Azure ML & Cognitive Services)

