Center for Digital Agriculture

Project Team

Abstract

The approaches commonly used to identify cattle that have the highest genetic potential for milk production and health status make simplistic assumptions about the relationship between phenotypes and genotypes. These simplifications introduce biases in the identification of genetically superior animals and hinder the improvement of the U.S. dairy cattle population. We propose the use of deep learning to address the analytical limitations of the present models. The goal of this proposal is to assess the strengths of convolutional neural nets (CNN) to relate genomic and phenotypic information. The capacity of this approach to accommodate additive and non-additive genomic effects will improve the identification of superior animals and advance the understanding of the molecular architecture of dairy traits.

Our team is uniquely positioned to pioneer the application of deep learning methods to U.S. dairy cattle improvement. A one-of-a-kind dataset to train and validate the CNN is available to investigator Rodriguez Zas in her role as investigator of a USDA multi-institutional grant. This dataset includes milk yield and health records from over 11,000 Holstein cows across the U.S. Cows from this population were genotyped for 770,000 single nucleotide polymorphisms (SNPs) across the genome. A new collaboration between ACES investigator Rodriguez Zas (contributing expertise in livestock genomic analysis), and NCSA investigator Huerta Escudero (providing expertise in deep learning methods in high-performance computing environments) will enable the application of CNNs to our comprehensive dataset. Results from the proposed project will support grant applications aligned with USDA NIFA Foundational program priority areas. The proposed project will showcase the multiple benefits of deep learning approaches including, a) the identification of genomic locations influencing traits of economic importance to the dairy industry; b) the characterization of epistatic effects influencing dairy traits; and c) the computation of precise merit estimates for genome-enabled improvement of the U.S. dairy population.

Close

About Cookies

Cookies and related technologies (herein “Cookies”) are small text files that a website saves on your computer when you visit the site. Cookies the University sets are called first-party Cookies. The data collected might be about you, your device, your preferences, or your login information. This data is mostly used to make the website work as expected so, for example, you don’t have to keep re-entering your credentials whenever you come back to the site. Cookies set by third parties are called third-party Cookies. We use third-party Cookies for analyzing website traffic and our advertising and marketing efforts. We have divided the Cookies we use into the following categories: Strictly Necessary, Performance, Functional, and Targeting. Under each category heading below you will find a general description of the Cookies in each category. You can change your browser settings to block, delete, or alert you to Cookies. The Help menu on the menu bar of most browsers will tell you how to do that. However, if you do, you may have to manually adjust preferences every time you visit a site and some features may not work as intended.

Read More…

Cookie Categories

Strictly Necessary Cookies are first-party Cookies that are necessary for the website to function. They can be either permanent or temporary and are usually only set in response to actions made directly by you that amount to a request for services, such as logging in or filling in forms. For example, we use Strictly Necessary Cookies to handle user registration and login. Some sites require the use of Strictly Necessary Cookies to access the site, such as University websites requiring University credentialed authentication. If you set your browser to block or delete Cookies, you may not be able to access the site or some parts of the site will not work.

Always Active

Performance Cookies allow us to count visits and traffic sources so we can measure and improve the performance and effectiveness of University websites. Performance Cookies also help the University understand which webpages are the most and least popular, see how visitors move around the site, and determine whether webpage content is relevant to user interests. Performance Cookies may be first-party or third party, permanent or temporary, and do not personally identify individual visitors. Some Performance Cookies are “analytics” Cookies (e.g., Google Analytics), using third-party software tools, which help us understand more about how our websites are used and where visitors come from by collecting and aggregating anonymous information on the pages visited and any advertisements viewed. The University does not take responsibility for the collection, use, and management of data by any third-party software tool provider unless required to do so by applicable law. If you set your browser to block or delete Cookies, some site services and functionalities may not work.

Always Active

Functional Cookies enhance the performance and functionality of our websites but are non-essential to their use. These permanent Cookies allow our website to remember information from your previous visits, such as details you submitted before or your previously stated preferences. These Cookies may also be used to provide services you request, such as newsletters or publications. They may be first- or third-party Cookies that enable services we have added to our webpages. If you set your browser to block or delete Cookies, some or all of these services may not function properly.

Always Active

Targeting Cookies are used to deliver content tailored to your interests and may be temporary or permanent. They may also be first-party or third-party Cookies. Targeting Cookies are based on uniquely identifying your browser and device; they do not store information such as your name. The University may use targeting Cookies prepared by the University, its third-party contractors, or advertising partners to provide you with personalized University display advertising and promotional material about the University and its programs. The University may also allow third parties to place Cookies on your device that collect and use anonymous information about your visits to, and interactions with, our websites to personalize advertisements and promotional materials for University goods and services. Targeting Cookies may be used by our third-party contractors or our advertising partners to build a profile of your interests and show you relevant advertisements on other sites. We may share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information that you have provided to them or that they have collected from your use of their services. If you set your browser to block or delete Cookies, you will still see advertisements, but they will be less targeted to your interests.

Always Active